高考数学必考的圆锥曲线经典解题10讲大招完整版推荐
解题是数学教师的基本功,基本功不行,无论课堂多么新颖,板书再漂亮,口才再好,那么他也不是一个优秀的教师。
老师偶尔有个把问题解答不出来很正常,但是经常答不出来就很是问题。丢人的不是解答不出学生的问题被“挂”在黑板上,而是明明不会,不知道还胡说八道或死鸭子嘴硬,那欠缺的不仅仅是知识而是品德。
见过太多的老师,遇到圆锥曲线和导数只会照着答案讲。圆锥曲线从来不自己算,导数直接念答案。高二导数只讲到第一问难度,高三一轮复习又时间太紧张,不可能花大量的时间练习导数模块,最后就只好扔给学生一句话:这个部分太难了,是给考清北的学生准备的,你们把第一问做会就行了。
今天给大家整理了高考数学必考的圆锥曲线经典解题10讲大招完整版推荐!希望能帮到你!需要领取资料的私戳vpp贰肆伍三七零叁零6八。
希望以上的总结能帮助大家。
圆锥曲线解题技巧归纳
圆锥曲线作为高中数学解析几何的重要知识点,其中蕴含着重要丰富的数学思想方法,解析几何基本思想是使用几何方法解决问题,也就是数形结合思想,所有的数学试题都不能离开形只谈抽象数或者是研究图。要求学生具备较扎实基础知识及较强综合能力.本文将重点分析下直线与圆锥曲线中常见题型,并给出相应解题技巧,使学生更好地备战高考数学。
圆锥曲线解题技巧归纳 直线与圆锥曲线常见解题思想方法有两种:几何法与代数法,下面将具体分析下这两种解题思想方法.
(一)几何法
几何法解决数学问题主要运用了数形结合思想,结合圆锥曲线定义、图形、性质等题目中已知条件转化成平面几何图形,并使用平面几何有关基本知识例如两点间线段最短、点到直线垂线段最短等来巧妙地解题.
(二)代数法
代数法主要是依据已知条件来构建目标函数,将其转化成函数最值问题,再结合使用配方法、不等式法、函数单调性法及参数法等等来求最值.
直线与圆锥曲线的常见题型及解题技巧实例分析
(一)题型一:弦的垂直平分线问题
解题技巧及规律:题干中给出直线与曲线M过点S(-1,0)相交于A,B两点,分析直线存在斜率并且不等于0,然后设直线方程,列出方程组,消元,对一元二次方程进行分析,分析判别式,并使用韦达定理,得出弦中点坐标,再结合垂直及中点,列出垂直平分线方程,求出N点坐标,最后结合正三角形性质:中线长是边长的32倍,使用弦长公式求出弦长.
(二)题型二:动弦过定点问题
解题技巧及规律:第一问是使用待定系数法求轨迹方程;第二问中,已知点A1、A2的坐标,因此可以设直线PA1、PA2方程,直线PA1与椭圆交点是A1(-2,0)和M,结合韦达定理,能求出点M坐标,同理求出点N坐标.动点P在直线L:x=t(t>2)上,这样就能知道点P横坐标,根据直线PA1,PA2方程求出点P纵坐标,得出两条直线斜率关系,通过计算出M,N点坐标,求出直线MN方程,代入交点坐标,如果解出是t>2,就可以了,否则不存在。
圆锥曲线解题技巧归纳 一、考查目标:
1、熟练掌握三大曲线的定义和性质;
2、能够处理圆锥曲线的相关轨迹问题;
3、能够处理圆锥曲线的相关定值、最值问题。
二、相关知识考查:
1、准确理解基本概念(如直线的倾斜角、斜率、距离等,也要注意斜率的存在与否)
2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定***点的坐标公式、到角公式、夹角公式等)
3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况等等)
4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算
5、了解线性规划的意义及简单应用
6、熟悉圆锥曲线中基本量的计算
7、掌握与圆锥曲线有关的'轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)
8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题。
高考数学怎么解圆锥曲线
微元法:任取x,x+dx小段,绕y轴旋转,得一个空心圆柱体,沿平行于y轴剪开,得一个长方体:厚为dx,宽为f(x),长2πx(圆的周长),故dV=2πxf(x)dx。
旋转而得的立体是一个中间圆台形镂空、以x=2为旋转轴的立体,所谓在[0,1]上取小区间[x,x+dx],实际上是在x处取了一个厚为dx、环绕直线x=2的圆环,该圆环的周长是2π(2-x),高是上半圆周对应的函数减去直线对应的函数,厚度是dx,周长×高×厚度就是微元dV
最常见的换“元”技巧有如下几种
(1)“时间元”与“空间元”间的相互代换(表现时、空关系的运动问题中最为常见);
(2)“体元”、“面元”与“线元”间的相互代换(实质上是降“维”);
(3)“线元”与“角元”间的相互代换(“元”的表现形式的转换);
(4)“孤立元”与“组合元”间的相互代换(充分利用“对称”特征)。
数学圆锥曲线解题技巧
数学圆锥曲线解题技巧
(1)充分利用几何图形
解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。
(2)充分利用韦达定理及“设而不求”的策略
我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。
(3)充分利用曲线系方程
利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。
(4)充分利用椭圆的参数方程
椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。
(5)线段长的几种简便计算方法
①充分利用现成结果,减少运算过程。
②结合图形的特殊位置关系,减少运算
在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。
③利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。
圆锥曲线是数学中的难中之难,这已经成为几乎所有高三学生的心头痛。其实,解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的圆锥曲线难题变成让同学们都很有信心的中等题目。
题型稳定:
近几年来高考解析几何试题一直稳定在两个选填(选择或填空)题,一个解答题上,分值约为25分,占总分值的近20%。
整体平衡,重点突出:
解析几何部分19个知识点,一般会考查到其中的半数以上,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既要注意全面,更要注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
能力立意,渗透数学思想:
一些常见的基本题型,如果借助于数形结合的思想,就能快速准确的得到答案,比死算要节省很多时间。
题型新颖,位置不定:
考查的选择题、填空题均属易、中等题,且解答题未必会有大难点。所以与相关知识的联系加深加大(如向量、函数、方程、不等式等),将会是今后解析几何的出题重心。
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的'问题,其常规方法是研究圆心到直线的距离。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。圆锥曲线内容的考查主要是:相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等。
近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的问题。
考查方式为:
选择题主要以椭圆、双曲线为考查对象,填空题以椭圆、双曲线、抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现。解析几何的解答题一般为难题,所以,解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视。
高考数学知识点
知识贵在分享。
圆锥曲线的几何性质
问题一:圆锥曲线到大学才知道的几何性质有那些? 列上一些 带证明更谢谢了 现在高中出题基本上都是大学 高考源于教材,必须略高于教材。
本人结合历年高考编著一本《高考常考的大一数学》有关圆锥曲线的有四线一方程。
1、 若P(x0,y0)在椭圆x2/a2+y2/b2=1上,得到切线方程为
x0x/a2+y0y/b2=1;
若P(x0,y0)在椭圆x2/a2+y2/b2=1外,得到切点弦方程为
x0x/a2+y0y/b2=1;
这两个方程形式一样,含义不一样。PPPPPP2
2、 若P(x0,y0)在双曲线x2/a2-y2/b2=1上,得到切线方程为
x0x/a2-y0y/b2=1;
若P(x0,y0)在椭圆x2/a2-y2/b2=1外,得到切点弦方程为
x0x/a2-y0y/b2=1;
3、 若P(x0,y0)在抛物线y2=2px上,得到切线方程为
y0y=p(x0+x);
若P(x0,y0)在抛物线y2=2px外,得到切点弦方程为
y0y=p(x0+x);
与庆杰高歌同行数学加强班为你提供!《高考常考的大一数学》一本15元,若要,短信联系13608614549
问题二:圆锥曲线的解题技巧? 1.圆锥曲线的两个定义:
(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常数 ,且此常数 一定要大于 ,当常数等于 时,轨迹是线段F F ,当常数小于 时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数 ,且此常数 一定要小于|F F |,定义中的“绝对值”与 <|F F |不可忽视。若 =|F F |,则轨迹是以F ,F 为端点的两条射线,若 |F F |,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程 表示的曲线是_____(答:双曲线的左支)
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点 及抛物线 上一动点P(x,y),则y+|PQ|的最小值是_____(答2)
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):
(1)椭圆:焦点在 轴上时 ( ),焦点在 轴上时 =1( )。方程 表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。
如(1)已知方程 表示椭圆,则 的取值范围为____(答: );
(2)若 ,且 ,则 的最大值是____, 的最小值是___(答: )
(2)双曲线:焦点在 轴上: =1,焦点在 轴上: =1( )。方程 表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
如设中心在坐标原点 ,焦点 、 在坐标轴上,离心率 的双曲线C过点 ,则C的方程为_______(答: )
(3)抛物线:开口向右时 ,开口向左时 ,开口向上时 ,开口向下时 。
如定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):
(1)椭圆:由 , 分母的大小决定,焦点在分母大的坐标轴上。
如已知方程 表示焦点在y轴上的椭圆,则m的取值范围是__(答: )
(2)双曲线:由 , 项系数的正负决定,焦点在系数为正的坐标轴上;
(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F ,F 的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数 ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中, 最大, ,在双曲线中, 最大, 。
4.圆锥曲线的几何性质:
(1)椭圆(以 ( )为例):①范围: ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),四个顶点 ,其中长轴长为2 ,短轴长为2 ;④准线:两条准线 ; ⑤离心率: ,椭圆 , 越小,椭圆越圆; 越大,椭圆越扁。
如(1)若椭圆 的离心率 ,则 的值是__(答:3或 );
(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答: )
(2)双曲线(以 ( )为例):①范围: 或 ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),两个顶点 ,其中实轴长为2 ,虚轴长为2 ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 ;④准线:两条准线 ; ⑤离心率: ,双曲线 ,等轴双曲线 , 越......>>
问题三:圆锥曲线六大名圆分别是什么,有什么性质? 圆锥曲线统一定义:(第二定义)
平面上到定点(焦点)的距离与到定直线(准线)的距离为定值(离心率e)的点的 *** .而根据e的大小分为椭圆,抛物线,双曲线.圆可看作e为0的曲线.
1.0x^2/a^2+y^2/b^2=1(0y^2/a^2+y^2/b^2=1(0a^2=b^2+c^2
椭圆上任意一点到两焦点距离之和为2a(定值),且大于焦距2c,这是第一定义
问题四:谁能告诉我现在什么游戏正在公测? 去17173